On the Use of Discrete Cosine Transforms for Multicarrier Communications
نویسندگان
چکیده
منابع مشابه
Discrete Cosine Transforms on Quantum Computers
A classical computer does not allow to calculate a discrete cosine transform on N points in less than linear time. This trivial lower bound is no longer valid for a computer that takes advantage of quantum mechanical superposition, entanglement, and interference principles. In fact, we show that it is possible to realize the discrete cosine transforms and the discrete sine transforms of size N ...
متن کاملThe discrete fractional cosine and sine transforms
This paper is concerned with the definitions of the discrete fractional cosine transform (DFRCT) and the discrete fractional sine transform (DFRST). The definitions of DFRCT and DFRST are based on the eigen decomposition of DCT and DST kernels. This is the same idea as that of the discrete fractional Fourier transform (DFRFT); the eigenvalue and eigenvector relationships between the DFRCT, DFRS...
متن کاملthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولOn matrix factorizations for recursive pruned discrete cosine transforms
This paper presents two matrix factorizations for recursive pruned discrete cosine transforms. Both factorizations have lower computational complexity when compared to the method of El-Sharkawy and Eshmawy (1995). ( 1998 Elsevier Science B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2012
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2012.2210714